Literature Review: Additive Manufacturing of Technical Ceramics

UC San Diego

JACOBS SCHOOL OF ENGINEERING Mechanical and Aerospace Engineering

lithoz.com

By: Joshua Pelz

Committee Members: Dr. Marc A. Meyers (Advisor) Dr. Joanna M. McKittrick

Dr. Javier E. Garay

June 6th, 2019

Why Technical Ceramics?

- Exceptional wear, corrosion, and temperature resistance
- Biocompatibility, electrical, optical
- Applications for aerospace, automotive, defense, and biomedical

coorstek.com

UC San Diego

geaviation.com

[1] C. B. Carter et at., Springer, 2007

1

Ceramic Forming Techniques

dowconstructionchemicals.com

Post-Forming Techniques difficult

- 80% part cost [2]
- Time consuming
- Low tool life

Forming technology limits geometry

- Often constrained to 2D
- Limited internal features
- No controlled compositional variation

C. B. Carter et al., Springer, 2007
 N. Travitzky et al., Adv. Eng. Mater., 2014

Additive Manufacturing (AM)

• Quick design iteration, testing

Material Selection

Polymers, metals, and ceramics

Complexity is free

• Design at multiple length scales in 3D

3dsystems.com

[3] B. Gibson et al., Springer, 2010

3dwasp.com

Is AM Viable?

- AM suitable for customized features, lowvolume production, and increased geometric complexity.
- Trade-off between resolution and scalability, due to the large increases in build time at lower layer heights
- Material selection is still quite limited
- Part properties are anisotropic due to directionality of layers and weaker interlayer bonding.
- Currently, very little standardization exists which leads to poor quality control

ISO/ASTM Standard

 Additive manufacturing is the "process of joining materials to make objects from three-dimensional (3D) model data, usually layer by layer, as opposed to subtractive manufacturing and formative manufacturing methodologies"

AM processes are single- or multi-step, meaning there may be post-processing required following some techniques [6]

[6] ISO/ASTM 52900, ASTM B. Stand., 2015

AM Inception

- Charles Hull patented first commercial AM technology in 1984
 - Concerned the use of an "apparatus for production of three-dimensional parts by stereolithography" [8]
- (SLA) means StereoLithography Apparatus
- The STL file format, an abbreviation of stereolithography, was developed by Dr. Hull's company 3D Systems for use by their SLA machines

[3] B. Gibson et al., *Springer*, 2010
[7] T. Gornet et al., *Wohlers Report*, 2014
[8] C. W. Hull, *U.S. Patent Office*, 1984

B. Gibson et al., Springer, 2010

General AM Processes

^[6] ISO/ASTM 52900, ASTM B. Stand., 2015

General AM Processes

Vat Polymerization

Commonly called:

- Stereolithography (SLA)
- Digital Light Processing (DLP)
- Lithography-based Ceramic Manufacturing (LCM)
 Strengths:
- High accuracy and complexity
- Good surface finish
- Large build volume

Material:

- UV-curable photopolymer resin
 - Load with ceramic powder

 Iaser
 shaping

 polymerized model
 support platform

 nufacturing (LCM)
 Iguid monomer

Resin is selectively cured by a laser or light projector [12]

[12] J. W. Halloran, Annu. Rev. Mater. Res., 2016

10

Binder Jetting

(b)

Commonly called:

- 3D Printing (3DP)
- Voxeljet[™]

Strengths:

- High resolution
- Powder acts as support material
 - Scaffold structures
- Wide range of materials

Material:

- Powdered
 - Plastic
 - Metal
 - Ceramic

[13] S. Bose et al., Mater. Today, 2013

UC San Diego JACOBS SCHOOL OF ENGINEERING Mechanical and Aerospace Engineering

Material Extrusion

Commonly called:

- Direct Ink Writing (DIW)
- Fused Deposition Modeling (FDM)
- Fused Filament Fabrication (FFF)

Strengths:

- Inexpensive, low-complexity
- Multi-material capability

Material:

- Thermoplastic filaments
 - Load with ceramic/metallic powder
- Pastes or slurries
 - Load with ceramic/metallic powder

[14] J. A. Lewis, Adv. Funct. Mater., 2006

Material is extruded through a nozzle in traces, layer-by-layer. Material self-supports via cooling, gelation, or other rheological effects [14].

Ceramic AM Challenges

• Pyrolysis and Sintering

Printing Defects

• Layer deadhesion, slumping, pores

Near-net Shape Difficult

Poor Quality Control

• Optimal powder packing between 65-72%

Large variation in properties for an identical process

• Post-processing causes shrinkage (>30%)

-72%

A. Zocca et al., J. Am. Ceram. Soc., 2015

UC San Diego

JACOBS SCHOOL OF ENGINEERING Mechanical and Aerospace Engineering

powder green compact

[15] J. A. Lewis, J. Am. Ceram. Soc., 2004

[16] A. Zocca et al., J. Am. Ceram. Soc., 2015
[17] C. Y. Yap et al., Appl. Phys. Rev., 2015

Ceramic AM Case Studies

3DP for Rapid Prototyping

[18] E. Sachs et al., CIRP Ann. - Manuf. Technol., 1990

UC San Diego

JACOBS SCHOOL OF ENGINEERING

3DP for Rapid Prototyping

Technical challenges

- Powder flowability (50 micron)
- Binder properties
- Post-processing

Results

- Excellent dimensional accuracy
 - 10-100 micron powder
 - Nozzle size 0.002 in. (apparent resolution)
 - No detectable shrinkage from curing

Printing Rate

- Powder spreading: dry (0.1-1 s) and wet (0.1-10 s)
- Continuous jet (20 m/s) and DoD (0.1 m/s)
- Binder setting (<1 s)
- Build-up rate of 0.01-0.27 m/hr for 25 micron layers

Alumina powder bound with silica

Line widths of 0.016 in Tolerance of +/- 0.0005 in 40 layers

3DP without Sintering

Uwe Gbureck et al. (2007)

• Modern 3DP study for bone scaffolds

Motivation – bioresorbable bone scaffolds

- Room temperature processing
- Thermally instable materials usable
- Sufficient mechanical properties

Technical challenges

• Low temperature densification workflow

UC San Diego JACOBS SCHOOL OF ENGINEERING Mechanical and Aerospace Engineering

Tricalcium Phosphate (TCP) powder bound with phosphoric acid

Workflow

- 1. Tricalcium Phosphate (TCP) powder + Phosphoric acid solution -> forms a brushite matrix with unreacted TCP.
- 2. Strengthen parts by washing three times in phosphoric acid solution for one minute
- 3. Brushite converted to monetite by hydrothermal reaction

[19] Gbureck U et al., Advanced Functional Materials, 2007

Brushite/TCP matrix from 20% phosphoric acid solution

Brushite/TCP matrix (a) with three subsequent phosphoric acid washes

17

3DP without Sintering

Results

- Compressive strength increases with phosphoric acid concentration
- Compressive strength increases after washing
- Compressive strength decreases after hydrothermal reaction, but biosorption increases

H ₃ PO ₄ concentration [wt%]	Compressive strength [MPa]	
5	0.9 ± 0.1	
10	$\textbf{3.0} \pm \textbf{0.3}$	
20	5.3 ± 0.6	
30	8.7±1.3	
Sample	CS [MPa]	
printed with 20% H ₃ PO ₄	5.3 ± 0.6	
3 x 60s hardened in H ₃ PO	4 22.3 ± 1.5	

Property	Brushite	Monetite	
CS [MPa]	23.4 ± 3.3	15.3 ± 1.1	
DTS [MPa]	3.3 ± 1.2	2.7 ± 0.3	
Porosity [%]	38.8	43.8	
Phase composition	51% Brushite,	63% Monetite,	
	12% Monetite, 26% β-TCP,	26% β-TCP,	
	11% α-TCP	11% α-TCP	

Printed Brushite (left) and Monetite (right) scaffolds as intramuscular implants

Implantation time [weeks]	Medium grey scale [%]	
	Brushite	Monetite
8	73 ± 20	66±18
2	59 ± 16	42 ± 14
6	35 ± 11	19 ± 5

[19] Gbureck U et al., Advanced Functional Materials, 2007

Vat Polymerization First Steps

Cure Depth (µm)

Michelle Griffith and John Halloran at U. Mich. (1996)

• First Vat Polymerization study for ceramic materials

Motivation - casting molds and end-use parts

- Quicker development and lower cost for unique parts
- Study efficacy for end-use parts
- Explore process limitations to better understand part design

Technical challenges

- Resin solids loading, rheology
- Powder refractive index, cure depth

Results

- Silica, Alumina: 100^s um (40 vol.%)
- Silicon Nitride: 21 um (10 vol.%) and 10 um (20 vol.%)
- Cure depth is hypothesized to be scattering limited

Vat Polymerization First Steps

Results

- Fracture surfaces free from printing artifacts
- Layers are not distinguishable
- Geometric stability in both thick and thin sections
- Dense alumina parts (1550 °C)

SLA-250: 40 vol.% alumina powder in diacrylate resin

20

Predicting Cure Depth

Michelle Griffith and John Halloran at U. Mich. (1997)

• Follow up study for ceramic vat polymerization

Motivation – predict cure depth

• More effective laser parameters

Results

- Modeled depth of cure for 40-50 vol.% slurries
- Refractive index difference main factor
- Interparticle spacing as a secondary factor ٠
- Particle size less related than others predicted ٠

UC San Diego

Biomedical Application

Probst et al. (2010)

Bone scaffold study using vat polymerization

Motivation – biomedical implant workflow

- Quick production of patient-specific bone scaffolds
- Determine printed cell-free-scaffold efficacy

Technical challenges

- Multi-step workflow
 - Imaging, model reconstruction, printing, implantation
- Powder refractive index, cure depth

Results

- Calvarial defect reconstruction using CT imaging
- Polycaprolactone-calcium phosphate ٠
- Long-range growth into scaffold at 6 months

Dense Ceramics by Robocasting

Joseph Cesarano and Thomas Baer at Sandia (1997)

• First Material Extrusion study for ceramic materials

Motivation - High-solids loading

- Print slurries of 50-65 vol.% ceramic and <1 vol.% organic
- Much quicker drying and pyrolyzation process (<24 hours vs. days at a heating rate of ~0.2 °C /min)
- Create denser green bodies, and therefore denser final parts

Technical challenges

• Slurry rheology and Drying Kinetics

Thunderbird printed from alumina with 20 layers and sintered to 96 %TD

UC San Diego

Dense Ceramics by Robocasting

Results

- Robocasting technique for ceramics
- Yield-pseudoplastic slurries consist of:
 - Alumina
 - Darvan-821A
 - DIH₂O
- Viscosity reduces from 1e6 to 4e4 cP with shear rates increasing from 0.07 to 1.7 s⁻¹
- FEA simulation of drying kinetics to better understand how to develop slurries and how to control bead geometry

FEA results for three drying rates after 5 minutes

[23] Joseph Cesarano III and Thomas A. Baer, Sandia National Laboratories, 1997

1 mm

Rheology in Al₂O₃ Printing

Jennifer Lewis and Joseph Cesarano (2000)

• High impact study concerning rheological effects on printability

Motivation – Rheology and Printability

- Reduce nozzle size
- Increase shape retention
- Create defect free parts

Technical challenges

- · Adjust slurry viscosity using mixing chamber
- Isolate print parameters

Viscosity versus shear rate for varying solids loading. Shear rate ranges are given for each segment of the printing process.

[24] J. Lewis et al., J. Am. Ceram. Soc., 2000

25

Rheology in Al₂O₃ Printing

Results

- Printable nozzles 0.254–1.370 mm
- Good line, edge, and shape retention
- Defect-free parts
- FEA simulation of shear rate

^[24] J. Lewis et al., J. Am. Ceram. Soc., 2000

Dense Al_2O_3

Al₂O₃

Shear Rate

during forming

1/s

Nominal

Lisa Rueschhoff group at Purdue (2016)

• Inexpensive, commercially available material extrusion printer

Motivation – Strong, Dense Al₂O₃

- Cheap printer •
- Full densification without pressure
- (vol.%) Design yield-pseudoplastic Al₂O₃ ink ٠
 - 55 vol.% = 122 Pa*s yield stress •

Technical challenges

Decreasing viscosity with solids loading

[25] L. Rueschhoff et al., Int. J. Appl. Ceram. Technol., 2016

Dense Al₂O₃

Results

- Inexpensive, commercially available material extrusion printer
- 55 vol.% optimal even, defect-free layers
 - 4.2 vol.% Darvan 821A
 - 4.9 vol.% PVP
- Pyrolysis at 700 °C
- Sintering at 1600 °C
 - No pressure or sintering additives

Densification > 98 %TD Grain size = 3.17 um Flexural Strength = 156.6 MPa

[25] L. Rueschhoff et al., Int. J. Appl. Ceram. Technol., 2016

Dense B₄C

Lisa Rueschhoff group at Purdue (2016)

• Follow-up study for Boron Carbide

Motivation – Dense B₄C without field-assisted sintering

- Dense B₄C can not be printed via binder jetting or vat polymerization
- Design yield-pseudoplastic B₄C ink

Technical challenges

- High solids loading
- Slumping
- High density without field-assisted sintering techniques

[26] W. J. Costakis et al., J. Eur. Ceram. Soc., 2016

Dense B₄C

Results

- 54 vol.% optimal even, defect-free layers
 - 5 vol.% PEI (25k g/mol)
 - 5 vol.% HCL
- Pyrolysis at 500 °C
- Sintering at 2000 °C
 - No pressure or sintering additives

UC San Diego

JACOBS SCHOOL OF ENGINEERING Mechanical and Aerospace Engineering

[26] W. J. Costakis et al., J. Eur. Ceram. Soc., 2016

Fiber Alignment

G. Franchin et al. (2017)

Ceramic Matrix Composite (CMC) design

Motivation – Complex Part with Aligned Carbon-fiber

- Fiber alignment by nozzle pressure gradient
- Alignment not possible for binder jetting or vat polymerization

Technical challenges

- Ink printability with high aspect-ratio fibers
- CAD file design with optimized fiber direction

[27] G. Franchin et al., J. Am. Ceram. Soc., 2017

Chopped-fiber > 30 vol.% Nozzle = 840 um

SiC Matrix with carbon fiber Porosity > 75% Compressive Strength = 4 MPa

Fiber Alignment

UC San Diego JACOBS SCHOOL OF ENGINEERING Mechanical and Aerospace Engineering

(B)

Results

3 Zone

Zone 4

0.00

- Ceramic Matrix Composite with aligned fibers ٠
 - SiC matrix ٠
 - Chopped carbon fibers (L = 100 um, t = 7.5 um) •
- Shear stresses at nozzle orifice cause alignment ٠
- Optimized ink reduces stress cracking •

[27] G. Franchin et al., J. Am. Ceram. Soc., 2017

Fiber alignment with printing direction

Multi-material Printing

James Smay et al. (2007)

• Multi-material material extrusion study

Motivation – Cermet Composites and Gradient Compositions

- Ternary mixtures for rapid screenings of technical ceramics (c)
- Ceramic-Metal (Cermet) composites (b)
- Explore active mixing nozzle strategies

Technical challenges

(b)

- Variation in rheology between multiple slurries
 - Viscosity
 - Compressibility
- Variation in surface chemistry between metallic and ceramic powder

[28] J. E. Smay et al., Int. J. Appl. Ceram. Technol., 2007

Multi-material Printing

Results

- Developed inks of similar rheology
- Discrete and gradient multi-material printing capability shown
- Created ternary gradients of parts for rapid dielectric screening
 - Better bulk property representation than thin film screening techniques
- Cermet parts demonstrate good shape retention during densification
 - Sintering done in a reducing atmosphere

[28] J. E. Smay et al., Int. J. Appl. Ceram. Technol., 2007

Ternary made by gradient compositions for rapid screening of advanced oxide ceramics

UC San Diego JACOBS SCHOOL OF ENGINEERING Mechanical and Aerospace Engineering

 $BaTiO_3$ – Ni composite structures for dielectric applications Sintering done at 1350 °C with flowing gettered-Ar.

Vat Polymerization

Common Names

- Stereolithography (SLA)
- Digital Light Processing (DLP)
- Lithography-based Ceramic Manufacturing (LCM)

Advantages

- High accuracy and complexity
- Good surface finish
- Best resolution = 10 um
 - Related to powder size

Applications

- Biomedical implants where surface texture is important
- Low refractive index materials

Binder Jetting

Common Names

- 3D Printing (3DP)
- VoxelJet[™]

Advantages

- High resolution
- Unbound-powder supports overhangs
- Wide range of materials
 - Any powdered material
 - Best resolution = 20 um
 - Based on powder size

Applications

- High resolution scaffold structures
- Low density bioresorbable structures

Material Extrusion

Common Names

- Direct ink writing (DIW)
- Fused Deposition Modeling (FDM)
- Fused Filament Fabrication (FFF)

Advantages

- Inexpensive
- Low complexity equipment
- Dense green bodies
- Small powder size
 - Improved sintering
- Best resolution = 150 um

Applications

- Dense technical ceramics
- Near-net shape parts
- Fiber alignment
- Multiple materials

Acknowledgments

Committee Members

Dr. Marc A. Meyers Dr. Joanna M. McKittrick Dr. Javier E. Garay

Members of the Meyers Group

Meyers Group

- [1] C. B. Carter and G. Norton, Ceramic Materials: Science and Engineering, 1st ed. Springer, 2007.
- [2] N. Travitzky et al., "Additive manufacturing of ceramic-based materials," Adv. Eng. Mater., vol. 16, no. 6, pp. 729–754, 2014.
- [3] B. Gibson, I.; Rosen, D. W.; Stucker, Additive Manufacturing Technologies. Springer, 2010.
- [4] W. Gao et al., "The status, challenges, and future of additive manufacturing in engineering," CAD Comput. Aided Des., vol. 69, pp. 65–89, 2015.
- [5] E. Atzeni and A. Salmi, "Economics of additive manufacturing for end-usable metal parts," Int. J. Adv. Manuf. Technol., vol. 62, no. 9–12, pp. 1147–1155, 2012.
- [6] ISO/ASTM 52900, "Standard Terminology for Additive Manufacturing Technologies General Principles Terminology," ASTM B. Stand., vol. i, pp. 1–9, 2015.
- [7] T. Gornet and T. Wohlers, "History of Additive Manufacturing," in Wohlers Report, Wohlers Report, 2014, pp. 1–34.
- [8] C. W. Hull, "APPARATUS FOR PRODUCTION OF THREE-DMENSONAL OBJECTS BY STEREOLITHOGRAPHY," 4,575,330, 1984.
- [9] C. R. Deckard, J. J. Beaman, and J. F. Darrah, "METHOD FOR SELECTIVE LASER SINTERING WITH LAYERWISE CROSS-SCANNING," 1986.
- [10] S. S. Crump, "APPARATUS AND METHOD FOR CREATING THREE-DIMENSIONAL OBJECTS," 1989.
- [11] E. Sachs, J. Haggerty, M. Cima, and P. Williams, "THREE-DIMENSIONAL PRINTING TECHNIQUES," 1989.
- [12] J. W. Halloran, "Ceramic Stereolithography: Additive Manufacturing for Ceramics by Photopolymerization," Annu. Rev. Mater. Res., vol. 46, no. 1, pp. 19–40, 2016.
- [13] S. Bose, S. Vahabzadeh, and A. Bandyopadhyay, "Bone tissue engineering using 3D printing," Mater. Today, vol. 16, no. 12, pp. 496–504, 2013.
- [14] J. A. Lewis, "Direct ink writing of 3D functional materials," Adv. Funct. Mater., vol. 16, no. 17, pp. 2193–2204, 2006.
- [15] J. A. Lewis, "Colloidal Processing of Ceramics," J. Am. Ceram. Soc., vol. 83, no. 10, pp. 2341–2359, 2004.
- [16] A. Zocca, P. Colombo, C. M. Gomes, and J. Günster, "Additive Manufacturing of Ceramics: Issues, Potentialities, and Opportunities," J. Am. Ceram. Soc., vol. 98, no. 7, pp. 1983–2001, 2015.
- [17] C. Y. Yap et al., "Review of selective laser melting: Materials and applications," Appl. Phys. Rev., vol. 2, no. 4, 2015.
- [18] E. Sachs, M. Cima, and J. Cornie, "Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model," CIRP Ann. Manuf. Technol., vol. 39, no. 1, pp. 201–204, 1990. 37

[19] Gbureck U et al., "Resorbable Dicalcium Phosphate Bone Substitutes Prepared by 3D Powder Printing," Advanced Functional Materials, vol. 17, pp. 3940-3945, 2007.

[20] M. L. Griffith and J. W. Halloran, "Freeform Fabrication of Ceramics via Stereolithography," Journal of the American Ceramic Society, vol. 79, no. 10. pp. 2601–2608, 1996.

[21] M. L. Griffith and J. W. Halloran, "Scattering of ultraviolet radiation in turbid suspensions," Journal of Applied Physics, vol. 81, no. 6, pp. 2538-2546, 1997.

[22] Probst FA, Hutmacher DW, Muller DF, Machens HG, Schantz JT. Calvarial reconstruction by customized bioactive implant. Handchir Mikrochir Plast Chir 2010;42:369–73.

[23] Joseph Cesarano III and Thomas A. Baer, "Recent Developments in Freeform Fabrication of Dense Ceramics From Slurry Deposition," Sandia National Laboratories, 1997.

[24] S. L. Morissette, J. a Lewis, J. Cesarano, D. B. Dimos, and T. Y. Baer, "Solid freeform fabrication of aqueous alumina-poly(vinyl alcohol) gelcasting suspensions," J. Am. Ceram. Soc., vol. 83, no. 10, pp. 2409–2416, 2000.

[25] L. Rueschhoff, W. Costakis, M. Michie, J. Youngblood, and R. Trice, "Additive Manufacturing of Dense Ceramic Parts via Direct Ink Writing of Aqueous Alumina Suspensions," Int. J. Appl. Ceram. Technol., vol. 13, no. 5, pp. 821–830, 2016.

[26] W. J. Costakis, L. M. Rueschhoff, A. I. Diaz-Cano, J. P. Youngblood, and R. W. Trice, "Additive manufacturing of boron carbide via continuous filament direct ink writing of aqueous ceramic suspensions," J. Eur. Ceram. Soc., vol. 36, no. 14, pp. 3249–3256, 2016.

[27] G. Franchin, L. Wahl, and P. Colombo, "Direct ink writing of ceramic matrix composite structures," J. Am. Ceram. Soc., vol. 100, no. 10, pp. 4397–4401, 2017.

[28] J. E. Smay, S. S. Nadkarni, and J. Xu, "Direct writing of dielectric ceramics and base metal electrodes," Int. J. Appl. Ceram. Technol., vol. 4, no. 1, pp. 47–52, 2007.

Questions?